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Abstract
This paper proposes two new panel unit root tests based on Zaykin et al. (2002)’s trun-
cated product method. The first one assumes constant correlation between P-values and the
second one uses sieve bootstrap to allow for general forms of cross-section dependence in
the panel units. Monte Carlo simulation shows that both tests have reasonably good size
and are powerful in cases of some very large P-values. The proposed tests are applied to
a panel of real GDP and inflation density forecasts, resulting in evidence that professional
forecasters may not update their forecast precision in an optimal Bayesian way.

I. Introduction
Recently, advances in panel unit root studies that provide reliable inference despite cross-
section dependence have spurred interest in testing for unit roots in macroeconomic data.1
O’Connell (1998) considered a GLS-based unit root test for homogeneous panels. Chang
(2004) showed that this GLS procedure depends on nuisance parameters and proposed
a corrective bootstrap approach. Phillips and Sul (2003), Bai and Ng (2004), Moon and
Perron (2004) and Pesaran (2007) proposed dynamic factor models that allow the com-
mon factors to have different effects on cross-section units. For a review on these so-called
“second generation” panel unit root tests, seeBreitung and Pesaran (2008) andGengenbach
et al. (2010).
We propose new methods for panel unit root tests by combining dependent P-values.

The P-value combination methods were introduced to panel unit root literature indepen-
dently by Maddala and Wu (1999) and Choi (2001). Recent contributions include Demet-
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rescu et al. (2006) and Hanck (2011). Compared to combining test statistics, combining
P-values has several advantages in that it allows different specifications for each panel
unit, any unit root test derived and unbalanced panels.
Our proposed tests are based onZaykin et al. (2002) ’s truncated productmethod (TPM),

which has been widely used in biostatistics, see Schmidt et al. (2008) and Seebacher and
Glanville (2010). The TPM takes the product of the P-values below some pre-specified
cut-off value, increasing power in cases of some very largeP-values. Building on the TPM,
we propose two panel unit root tests: a modified TPM that assumes a constant correlation
among the P-values and a bootstrap TPM that allows for general forms of cross-section
dependence in the panel units. Monte Carlo simulation provides evidence of good power
with moderate and large T values for both tests, despite the slightly oversized modified
TPM.
For an empirical example, we test the null hypothesis that forecast precision, if

perceived properly, should contain a unit root, as implied by the Bayesian learning model
developed in Lahiri and Sheng (2008). Based on a panel of density forecasts for real GDP
and inflation during 1992–2009, we find evidence that some professional forecasters do
not optimally update their forecast precision.

II. Truncated product method
Consider the model

yit = (1−�i)�i+�iyi,t−1+ εit , i=1, . . . ,N ; t=1, . . . ,T . (1)
The specification in equation (1) allows for heterogeneity in both the intercept and the

slope. For convenience, equation (1) is rewritten as

�yit =−�i�i+�iyi,t−1+ εit , (2)

where �yit = yit − yi,t−1 and �i=�i−1. We test
H0 :�i=0 for all i (3)

against the alternative

H1 :�i <0, i=1, . . . ,N0; �i=0, i=N0+1, . . . ,N , (4)

such that

lim
N→∞

N0
N

=�, 0<�≤1. (5)

Remark 1. Note that the null and alternative hypotheses can also be written as H0 :�=0
vs. H1 : �>0. Thus, rejection of the null can be interpreted as evidence for rejecting the
unit root hypothesis for a non-zero fraction of panel units as N→∞.
Let Si,Ti be a test statistic applied to the ith unit of the panel in equation (2). Then

the corresponding P-value is defined as pi=F(Si,Ti ), where F(·) denotes the cumulative
distribution function (c.d.f.) of Si,Ti . We assume

Assumption 1 (Uniformity). UnderH0, Si,Ti has a continuous distribution function, which
ensures a uniform distribution of the P-values.

© John Wiley & Sons Ltd and the Department of Economics, University of Oxford 2012.
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Zaykin et al. (2002) suggested the use of the product of all those P-values that do not
exceed some pre-specified value � such that

W =
N∏
i=1
pI (pi≤�)
i , (6)

where I (·) is the indicator function.

Remark 2. When some series in the panel are clearly nonstationary such that the resulting
P-values are close to 1, traditional P-value combination methods may lose power because
they could be dominated by these large P-values. By truncating, these large components
are removed, thereby providing more power, much like how a “trimmed mean” gains
efficiency in the presence of outliers.
When all P-values are independent, W has a closed form distribution, see Zaykin

et al.(2002). However, the distribution of W is unknown when the independency assump-
tion is violated. Motivated by the success of the TPM in biostatistics, below we extend the
TPM to allow for cross-section dependence among the P-values in panel unit root tests.

Modified TPM

First, we modify the TPM, denoted by Wm, by assuming a constant correlation between
the P-values.Although constant correlations may not hold in some empirical applications,
Wm at least does not require the panel to be balanced. The procedure is as follows:
Step 1: CalculateWm using equation (6).
Step 2: Estimate the correlation matrix,�, for P-values. Following Hartung (1999) and

Demetrescu et al. (2006), we assume a constant correlation between the probits ti and tj,
cov(ti, tj)=�, for i /= j, i, j=1, . . . ,N ,

where ti=�−1(pi) and tj =�−1(pj). � can be estimated by

�̃=max
(

− 1
N −1, �̂

)
,

where �̂=1− 1
N−1

∑N
i=1(ti− t̄)2 and t̄= 1

N

∑N
i=1 ti.

Step 3: The distribution of Wm is calculated based on the following Monte Carlo sim-
ulations:

a. Draw pseudo-random probits from the normal distribution with mean zero and
the estimated correlation matrix, �̂, and transform them back through the standard
normal c.d.f., resulting in N P-values, denoted by p̃1, p̃2, · · · , p̃N .

b. Calculate W̃ =
N∏
i=1
p̃i
I (p̃i≤�).

c. Repeat steps 3a and 3b B times and get W̃l , l=1, . . . ,B.
d. The P-value forWm is given by p= 1

B

∑B
l=1 I (W̃l ≤Wm).

Remark 3. Note that the transformationmarginally alters the correlation among P-values.
However, as pointed out by Zaykin et al. (2002), the correlation is approximately invariant

© John Wiley & Sons Ltd and the Department of Economics, University of Oxford 2012.
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under monotone transformations. Therefore, the correlation between the probits ti and tj
should be roughly equal to the correlation between the P-values pi and pj.

Remark 4. We circumvent the problem of a degenerate correlation matrix � in the case
for T<N by applying Hartung (1999)’s proposal, thus allowing for cases of very large N.

Bootstrap TPM

To preserve the dependence structure among cross-section units, we extend Palm, Smeekes
and Urbain (2008)’s bootstrap method by resampling entire cross sections of residuals.We
make the following assumptions:

Assumption 2 (Linearity). The error term εit is given by a general linear process
εit =�i(L)eit , (7)

where �i(z)=
∑∞

k=0�ik zk and
∑∞

k=0 |�ik |<∞ for i=1, . . . ,N .

Assumption 3 (Dependency; see also Chang (2004) Assumption 1). Define the N × 1
vector et ≡ (e1t , . . . , eNt)′ for t=1, . . . ,T . Let et be a sequence of i.i.d. random variables
such that Eet =0, Eete′t =� and E‖et‖4<∞, where ‖ · ‖ is the Euclidean norm.
Below we outline the necessary steps for conducting the bootstrap TPM,W *.
Step 1: CalculateW * using equation (6).
Step 2: Obtain the residuals from an Augmented Dickey–Fuller (ADF) regression

êit = yit − �̂iyi,t−1−
Ji∑
j=1

�̂ij�yi,t−j, (8)

where the lag order Ji is selected according to themodifiedAIC procedure byNg and Perron
(2001). Then form the time series residual vectors êt ≡ (ê1t , . . . , êNt)′ for t=1, . . . ,T .2
Step 3: Generate the N ×1 vector e*t ≡ (e*1t , . . . , e*Nt)′ by resampling from the centered

residual vectors (êt −T−1∑T
t=1 êt), t=1, . . . ,T . The bootstrap samples e*t constructed as

such will preserve the cross-section dependence structure of the data, as pointed out by
Maddala and Wu (1999).
Step 4: Generate ε*it recursively from e*it as

ε*it =
Ji∑
j=1

�̂ijε
*
i,t−j + e*it. (9)

Step 5: Impose the null of unit root to obtain bootstrap samples y*it as

y*it = y*i,t−1+ ε*it. (10)

We set y*i,−50=0 and run the recursion for 50 initial observations before using y*it to
mitigate the effect of initial conditions.
2One can also use the approach in Chang and Park (2003) to resample from the first difference of yit to form a

difference-based bootstrap TPM.

© John Wiley & Sons Ltd and the Department of Economics, University of Oxford 2012.
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Step 6: Based on the bootstrap sample y*it , calculate W̃ , defined in equation (6).
Step 7: Repeat steps 3–6 B times and get W̃ l , l=1, . . . ,B.
Step 8: The P-value forW * is given by p= 1

B

∑B
l=1 I (W̃ l ≤W *).

III. Monte Carlo study
Initially, we consider dynamic panels with a common factor driving the cross-section
dependence. The DGP is as in equation (1), where

εit = 	i ft +
it , (11)

for i=1, . . . ,N , t=−50, −49, . . . ,T with the initial value yi,−50=0. The factor loading
	i is drawn from a uniform distribution as 	i ∼ i.i.d. U [0, 3]. The individual fixed effect
�i, the common factor ft and the error term 
it are independently drawn from normal
distributions as �i∼ i.i.d.N(0, 1), ft∼ i.i.d.N(0,�2f ) and 
it∼ i.i.d.N(0, 1).We explore the
properties of the tests under cross-section independence with �2f =0 (DGP 1) and under
“high” cross-section dependence with �2f =10 (DGP 2).

Remark 5. Under the null hypothesis of common and idiosyncratic unit roots, the DGP
setup in Bai and Ng (2004) is equivalent to our DGP in (1) and (11) when �i=1 for all i.
However, these two DGPs are different in the case of a unit root in the common factor and
near-unit roots in the idiosyncratic errors. See Banerjee, Marcellino and Osbat (2004) for
a detailed description of this case of cross-unit cointegration.
Next we allow for serial correlation in the error terms. We consider a number of exper-

iments where the errors 
it in equation (11) are generated either as an AR(1) process

it =�i
i,t−1+ eit (DGP 3), or as an MA(1) process 
it = ei,t +�iei,t−1 (DGP 4), where eit ∼
i.i.d.N(0, 1).We choose �i∼ i.i.d.U [0.2, 0.4] orU [−0.4, −0.2] and �i∼ i.i.d.U [0.2, 0.4]
or U [−0.4, − 0.2]. These DGPs are intended to check the behaviour of our tests under
different types of serial correlation.
Finally, we consider spatial dependence as an alternative scenario of panel cross-section

dependence. Following Baltagi, Bresson and Pirotte (2007), we consider two commonly
used spatial error processes: the spatial autoregressive (SAR) and the spatial moving aver-
age (SMA). The SAR specification (DGP 5) for the N × 1 error vector εt in equation (1)
can be expressed as εt = (IN − 1WN )−1�t , where WN is a known N ×N spatial weights
matrix. 1 is the spatial autoregressive parameter and the error component �t is assumed
to be distributed independently across a cross-section dimension with constant variance
�2� . In contrast, the SMA specification (DGP 6) for the error vector εt can be expressed
as εt = (IN +2WN )�t , where 2 is the spatial moving average parameter. Without loss of
generality, we let �2� =1. We consider the spatial dependence with 1=0.8 and 2=0.8.
We specify the spatial weight matrix WN as a “1 ahead and 1 behind” matrix with the ith
row (1< i<N ) of this matrix comprising of nonzero elements in positions i+1 and i−1.
Each row of this matrix is normalized such that all non-zero elements are equal to 1/2.
For all of DGPs considered here, we choose

�i

{∼ i.i.d. U [0.85, 0.95] for i=1, . . . ,N0, where N0=� ·N
=1 for i=N0+1, . . . ,N .

© John Wiley & Sons Ltd and the Department of Economics, University of Oxford 2012.
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The value of � indicates the fraction of stationary series in the panel, varying in the
interval 0−1. When �=0, we explore the size of the tests. Choosing �=0.1, 0.5 and 0.9,
we analyse the impact of the proportion of stationary series on the power of the tests.
The tests are one-sided with the nominal size set at 5%, and conducted for all combina-
tions of N ∈{20, 50} and T ∈{20, 50, 100}. The results are obtained with MATLAB using
M =2, 000 simulations. Within each simulation, additional B=1, 000 bootstrap replica-
tions are performed.
We calculate theADF t-statistics. The number of lags in theADF regressions is selected

according to the modified AIC procedure suggested by Ng and Perron (2001). We obtain
P-values of unit root tests using response surface regressions as provided by MacKinnon
(1996).3
As a preliminary check, we compute the pairwise cross-section correlation coefficient,

�̂ij, of the residuals from theADF regressions. Following Pesaran (2004), we construct the
average of these correlation coefficients as ¯̂�= 2

N (N−1)
∑N−1

i=1
∑N

j= i+1 �̂ij and the associated

cross-section dependence (CD) test statistics as CD=
√

2T
N (N−1)

∑N−1
i=1

∑N
j= i+1 �̂ij, where

CD∼N(0, 1) under the null of no cross-section dependence. When the null hypothesis is
rejected, we use our proposed tests; if not, we use Zaykin et al. (2002)’s originalW test. The
average correlation coefficient is 0 under cross-section independence (DGP1), between 3%
to 22%under spatial dependence (DGP5 and 6) and about 80%with a factor structure (DGP
2–4). Thus, our considered DGPs represent a wide range of cross-section dependence. The
CD statistics reject the null and prompt us to useWm andW * in all cases except DGP 1.
Next, we report the size and power of the modified TPM and bootstrap TPM. For com-

parison, we also include some other commonly used panel unit root tests.4 In the absence
of clear guidance for the choice of �, we try ten different cut-off values, ranging from
0.05, 0.1, 0.2, . . ., up to 0.9. We find that both original and proposed TPMs tend to have
relatively small size distortions with a smaller �, and that their power does not show any
clear patterns. We only present the results for �=0.1 because our simulation results are
similar for 0.05≤ �≤0.2.5
With no cross-section dependence (not reported here), the P, S, W and CIPS tests yield

good empirical size. The other tests are slightly undersized. In the presence of strong
cross-section dependence (Tables 1 and 2), the P test shows severe size distortions, theW *

test exhibits good size properties, the K*a and K*b tests generally perform well but are, as
expected, severely oversized when N =50 and T =20 because they are designed for cases
of small N and large T values. The CIPS and S tests show size distortions for the case of
negative serial correlation but perform reasonably well for other cases. The Z andWm tests
are slightly oversized but the Pce test is conservative most of the time.6

3See Cheung and Lai (1995) as an alternative.
4More specifically, we consider Maddala and Wu (1999)’s Fisher test (denoted by P), Demetrescu et al. (2006)’s

modified inverse normal test (denoted by Z), Hanck (2011)’s Simes test (denoted by S), Pesaran (2007)’s CIPS test,
Bai and Ng (2004)’s Pce test, Chang (2004)’s K*OT test (denoted by K*a ) and Palm et al. (2008)’s modified K*OT test
(denoted by K*b ).
5The complete simulation results for the TPM with all candidate truncation points are available upon request.
6The results from negative AR serial correlation are qualitatively similar to those from negative MA serial corre-

lation and the results from positive MA serial correlation are qualitatively similar to those from positive AR serial
correlation in Table 2 and thus they are not reported here.

© John Wiley & Sons Ltd and the Department of Economics, University of Oxford 2012.
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TABLE 1

Size and power of tests: factor structure and no serial correlation

N T P Z S CIPS Pce K*a K*b Wm W *

20 20 0.239 0.078 0.034 0.036 0.033 0.047 0.027 0.081 0.065
50 0.222 0.072 0.030 0.050 0.030 0.033 0.031 0.077 0.075

�=0 100 0.236 0.071 0.034 0.045 0.040 0.029 0.032 0.074 0.080
50 20 0.271 0.076 0.030 0.037 0.025 0.217 0.196 0.079 0.063

50 0.292 0.071 0.022 0.042 0.019 0.101 0.080 0.073 0.073
100 0.287 0.068 0.034 0.050 0.022 0.083 0.075 0.070 0.075

20 20 0.228 0.084 0.043 0.032 0.024 0.033 0.026 0.093 0.067
50 0.257 0.087 0.037 0.256 0.020 0.073 0.058 0.092 0.081

�=0.1 100 0.280 0.094 0.070 0.621 0.024 0.135 0.142 0.100 0.084
50 20 0.304 0.094 0.035 0.020 0.016 0.231 0.171 0.102 0.075

50 0.311 0.080 0.037 0.312 0.020 0.147 0.133 0.085 0.083
100 0.356 0.091 0.082 0.748 0.030 0.261 0.262 0.118 0.098

20 20 0.254 0.110 0.040 0.008 0.058 0.035 0.030 0.120 0.065
50 0.375 0.151 0.069 0.473 0.105 0.125 0.089 0.188 0.117

�=0.5 100 0.634 0.345 0.191 0.980 0.135 0.330 0.346 0.408 0.328
50 20 0.326 0.124 0.036 0.000 0.091 0.211 0.166 0.142 0.071

50 0.456 0.152 0.063 0.583 0.158 0.264 0.224 0.184 0.145
100 0.706 0.367 0.182 0.997 0.217 0.600 0.592 0.429 0.349

20 20 0.296 0.117 0.051 0.018 0.088 0.060 0.039 0.120 0.092
50 0.476 0.164 0.081 0.356 0.321 0.158 0.152 0.176 0.200

�=0.9 100 0.832 0.460 0.275 0.958 0.637 0.463 0.461 0.467 0.532
50 20 0.358 0.118 0.047 0.007 0.125 0.291 0.231 0.124 0.093

50 0.556 0.177 0.083 0.466 0.456 0.467 0.449 0.189 0.210
100 0.877 0.445 0.244 0.990 0.747 0.841 0.852 0.456 0.516

Note: Rejection rates of panel unit root tests at nominal level � = 0.05. P is Maddala andWu (1999)’s Fisher test, Z
is Demetrescu et al. (2006)’s modified inverse normal test, S is Hanck (2011)’s Simes test, CIPS is Pesaran (2007)’s
cross-sectionally augmented IPS test, Pce is Bai and Ng (2004)’s pooled test statistic on idiosyncratic components,
K*a is Chang (2004)’s K*OT test, K*b is Palm et al. (2008)’s modified K*OT test,Wm is the modified TPM andW * is the
bootstrap TPM.

Table 3 reports the results with spatial dependence. Under SAR specification, the CIPS,
Pce and Wm tests exhibit size distortions, mainly because spatial correlation is typically
weak and not captured by a common factor or constant correlation assumption. Addition-
ally, ignoring such a weak correlation leads to over-rejection, as shown by the result from
the P test. The K*a and K*b tests are severely undersized. The W * test is undersized for
small T values, but the size distortion reduces as T becomes large. The S test performs
reasonably well. Under SMAspecification, while all bootstrap tests suffer from downward
size distortions, the P, CIPS andWm tests are slightly oversized.
In general, the power of all tests increases when T increases and when N increases as

long as � is fixed, which justifies the use of panel data in unit root tests. All tests become
more powerful when � increases, which is consistent with the findings in Karlsson and
Löthgren (2000).
When comparing the different tests under varying scenarios, there is no dominant test.

For example, the S test outperforms the others when very few series in the panel are
stationary, the CIPS test performs the best under the factor structure, the Pce test is prefer-
able under spatial dependence, and the K*a and K*b tests behave similarly and well under

© John Wiley & Sons Ltd and the Department of Economics, University of Oxford 2012.
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TABLE 2

Size and power of tests: factor structure with serial correlation

N T P Z S CIPS Pce K*a K*b Wm W *

(a) Positive AR serial correlation
20 20 0.184 0.095 0.030 0.030 0.050 0.044 0.025 0.089 0.051

50 0.197 0.083 0.030 0.023 0.032 0.056 0.051 0.084 0.063
�=0 100 0.173 0.073 0.028 0.033 0.032 0.082 0.068 0.072 0.060

50 20 0.265 0.100 0.038 0.025 0.033 0.226 0.181 0.100 0.054
50 0.242 0.081 0.026 0.040 0.019 0.173 0.161 0.087 0.055
100 0.241 0.076 0.025 0.045 0.027 0.200 0.192 0.077 0.068

20 20 0.198 0.095 0.031 0.026 0.042 0.044 0.023 0.093 0.055
50 0.222 0.086 0.035 0.089 0.026 0.078 0.063 0.089 0.063

�=0.1 100 0.239 0.094 0.062 0.301 0.038 0.216 0.196 0.108 0.075
50 20 0.259 0.096 0.034 0.019 0.027 0.194 0.164 0.097 0.054

50 0.289 0.102 0.036 0.103 0.021 0.237 0.213 0.106 0.076
100 0.325 0.102 0.055 0.401 0.040 0.328 0.414 0.112 0.076

20 20 0.229 0.116 0.044 0.007 0.072 0.062 0.035 0.136 0.059
50 0.320 0.130 0.050 0.272 0.113 0.196 0.149 0.158 0.111

�=0.5 100 0.558 0.305 0.134 0.882 0.163 0.491 0.454 0.363 0.260
50 20 0.274 0.106 0.032 0.002 0.101 0.200 0.146 0.125 0.053

50 0.404 0.146 0.048 0.257 0.160 0.385 0.364 0.176 0.103
100 0.654 0.334 0.120 0.963 0.249 0.786 0.783 0.411 0.303

20 20 0.246 0.103 0.037 0.017 0.120 0.073 0.060 0.108 0.064
50 0.428 0.158 0.060 0.152 0.386 0.281 0.215 0.165 0.166

�=0.9 100 0.761 0.377 0.187 0.818 0.738 0.595 0.590 0.385 0.434
50 20 0.327 0.129 0.034 0.013 0.158 0.244 0.201 0.137 0.089

50 0.505 0.154 0.052 0.272 0.563 0.588 0.538 0.167 0.175
100 0.829 0.393 0.169 0.967 0.855 0.935 0.934 0.410 0.455

(b) Negative MA serial correlation
20 20 0.280 0.087 0.063 0.134 0.039 0.030 0.018 0.094 0.077

50 0.278 0.090 0.079 0.200 0.034 0.015 0.012 0.093 0.091
�=0 100 0.276 0.082 0.096 0.213 0.035 0.015 0.014 0.081 0.088

50 20 0.315 0.078 0.057 0.151 0.023 0.205 0.211 0.084 0.083
50 0.344 0.085 0.097 0.256 0.021 0.053 0.042 0.089 0.087
100 0.341 0.074 0.111 0.312 0.032 0.034 0.044 0.078 0.095

20 20 0.281 0.092 0.055 0.080 0.027 0.031 0.020 0.098 0.079
50 0.315 0.100 0.107 0.488 0.025 0.039 0.026 0.108 0.105

�=0.1 100 0.337 0.110 0.156 0.819 0.026 0.082 0.090 0.135 0.106
50 20 0.325 0.082 0.062 0.094 0.021 0.201 0.189 0.086 0.075

50 0.352 0.080 0.118 0.589 0.027 0.092 0.079 0.094 0.082
100 0.386 0.103 0.198 0.938 0.034 0.168 0.152 0.133 0.112

20 20 0.305 0.110 0.070 0.010 0.065 0.047 0.025 0.129 0.089
50 0.428 0.180 0.154 0.607 0.121 0.084 0.065 0.211 0.161

�=0.5 100 0.682 0.405 0.324 0.995 0.144 0.262 0.266 0.468 0.412
50 20 0.374 0.136 0.071 0.004 0.105 0.178 0.157 0.155 0.092

50 0.502 0.184 0.173 0.757 0.170 0.176 0.155 0.225 0.175
100 0.744 0.408 0.399 1.000 0.191 0.438 0.443 0.481 0.404

20 20 0.338 0.124 0.075 0.035 0.065 0.046 0.041 0.132 0.103
50 0.563 0.218 0.176 0.509 0.253 0.102 0.095 0.221 0.256

�=0.9 100 0.837 0.525 0.438 0.978 0.525 0.344 0.362 0.519 0.554
50 20 0.391 0.119 0.081 0.031 0.102 0.269 0.233 0.132 0.113

50 0.605 0.218 0.236 0.715 0.358 0.362 0.316 0.229 0.236
100 0.885 0.543 0.532 0.996 0.584 0.676 0.682 0.541 0.568
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TABLE 3

Size and power of tests under spatial dependence

N T P Z S CIPS Pce K*a K*b Wm W *

(a) Spatial AR dependence
20 20 0.126 0.076 0.049 0.115 0.092 0.009 0.006 0.092 0.021

50 0.135 0.070 0.046 0.118 0.073 0.008 0.007 0.079 0.040
�=0 100 0.118 0.071 0.044 0.138 0.082 0.004 0.003 0.067 0.054

50 20 0.117 0.051 0.052 0.096 0.071 0.013 0.013 0.092 0.014
50 0.129 0.056 0.058 0.109 0.062 0.002 0.002 0.080 0.037
100 0.125 0.056 0.047 0.097 0.088 0.001 0.001 0.080 0.048

20 20 0.124 0.078 0.056 0.120 0.094 0.011 0.011 0.114 0.027
50 0.147 0.092 0.060 0.131 0.091 0.011 0.011 0.130 0.052

�=0.1 100 0.228 0.134 0.104 0.188 0.127 0.014 0.014 0.196 0.088
50 20 0.145 0.067 0.053 0.081 0.076 0.011 0.012 0.137 0.021

50 0.181 0.083 0.051 0.124 0.102 0.006 0.006 0.157 0.064
100 0.318 0.154 0.106 0.172 0.173 0.007 0.006 0.308 0.166

20 20 0.174 0.098 0.061 0.132 0.148 0.014 0.011 0.138 0.042
50 0.361 0.195 0.086 0.240 0.265 0.035 0.034 0.227 0.156

�=0.5 100 0.781 0.548 0.266 0.520 0.506 0.141 0.116 0.611 0.579
50 20 0.208 0.095 0.071 0.105 0.155 0.017 0.018 0.165 0.036

50 0.564 0.275 0.103 0.266 0.456 0.032 0.030 0.317 0.244
100 0.970 0.822 0.314 0.667 0.849 0.186 0.210 0.847 0.891

20 20 0.225 0.129 0.064 0.153 0.201 0.025 0.023 0.161 0.051
50 0.621 0.270 0.133 0.454 0.583 0.088 0.071 0.273 0.284

� = 0.9 100 0.984 0.721 0.434 0.922 0.957 0.474 0.415 0.721 0.887
50 20 0.296 0.140 0.070 0.142 0.290 0.021 0.020 0.182 0.058

50 0.880 0.321 0.122 0.544 0.878 0.109 0.116 0.319 0.487
100 1.000 0.879 0.478 0.995 1.000 0.748 0.752 0.872 0.996

(b) Spatial MA dependence
20 20 0.070 0.049 0.044 0.072 0.060 0.024 0.023 0.070 0.017

50 0.075 0.050 0.052 0.089 0.046 0.013 0.015 0.074 0.023
�=0 100 0.077 0.051 0.042 0.088 0.053 0.019 0.020 0.074 0.041

50 20 0.081 0.039 0.058 0.047 0.044 0.024 0.024 0.089 0.009
50 0.078 0.036 0.043 0.062 0.035 0.012 0.010 0.071 0.017
100 0.076 0.031 0.048 0.060 0.046 0.012 0.013 0.074 0.038

20 20 0.080 0.054 0.050 0.066 0.055 0.025 0.021 0.102 0.024
50 0.101 0.062 0.053 0.077 0.077 0.029 0.034 0.111 0.034

�=0.1 100 0.185 0.121 0.097 0.132 0.125 0.056 0.058 0.212 0.107
50 20 0.076 0.034 0.062 0.068 0.045 0.032 0.025 0.109 0.014

50 0.133 0.058 0.050 0.085 0.088 0.029 0.025 0.146 0.033
100 0.281 0.144 0.118 0.127 0.197 0.069 0.071 0.298 0.179

20 20 0.125 0.078 0.055 0.082 0.101 0.031 0.038 0.121 0.032
50 0.346 0.221 0.083 0.209 0.283 0.127 0.153 0.243 0.155

�=0.5 100 0.862 0.668 0.280 0.525 0.667 0.568 0.573 0.700 0.689
50 20 0.155 0.076 0.050 0.077 0.139 0.024 0.042 0.150 0.016

50 0.600 0.330 0.098 0.239 0.576 0.213 0.215 0.354 0.232
100 0.995 0.910 0.350 0.720 0.987 0.890 0.898 0.918 0.955

20 20 0.187 0.118 0.067 0.109 0.177 0.055 0.054 0.151 0.048
50 0.652 0.278 0.114 0.399 0.653 0.378 0.367 0.257 0.326

�=0.9 100 0.999 0.801 0.498 0.953 0.990 0.952 0.968 0.802 0.946
50 20 0.290 0.150 0.079 0.106 0.316 0.040 0.038 0.198 0.052

50 0.942 0.344 0.130 0.535 0.956 0.572 0.548 0.320 0.544
100 1.000 0.930 0.543 1.000 1.000 1.000 1.000 0.930 1.000
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factor structure but not under SAR specification. TheWm, Z andW * tests have comparable
power and all perform well under a factor structure with negative serial correlation and
spatial dependence.7 We disregard the P test due to its immense size distortions under
cross-section dependence.

IV. Empirical application
In the analysis of the term structure of macroeconomic forecasts, Lahiri and Sheng (2008)
proposed a Bayesian learning model, implying that forecast precision, if perceived prop-
erly, should contain a unit root. We test this implication directly by using density forecasts
for inflation and real GDP.
Following the terminology in Lahiri and Sheng (2008), the precision of individual i’s

belief is evolved according to the following equation:

aith=ait,h+1+bith, (12)

where aith is the precision of individual i’s posterior belief in predicting the variable for the
target year t and h quarters ahead to the end of the target year, and ait,h+1 is the precision of
his prior belief at h+1 quarters ahead to the end of the target year t. Here bith is individual
i’s perceived quality of public information, which measures the shock to his precision
updating process.
The data in this study are taken from Survey of Professional Forecasters (SPF), which

uniquely includes density forecasts for inflation and real GDP. For several reasons as stated
in Engelberg, Manski andWilliams (2009), we restrict attention to data collected from the
first quarter of 1992 to the second quarter of 2009. Due to the design of the survey, the
actual horizons for these forecasts are approximately from 8 quarters to 1 quarter for a
target year. This fixed-target scheme enables us to study the evolution of forecast precision
over horizons. For the purpose of estimation, we eliminate observations by infrequent
respondents, and focus on the “regular” respondents who participated in at least 50% of
the forecast periods. This leaves us with 24 individuals, whose identification numbers are
listed in Table 4.8 The precision aith is calculated as the reciprocal of the variance of the
density forecast reported by individual i.9
We first estimate individual DF regressions and then compute the pairwise cross-sec-

tion correlation coefficient of the residuals. In our sample, the average of these correlation
coefficients is estimated to be 0.07 for inflation and 0.09 for real GDP. The CD statis-
tics, 9.41 for inflation and 11.70 for real GDP, strongly reject the null of no cross-section
dependence for both variables.

7Also notable is that our residual-based bootstrapTPM is slightlymore powerful than the difference-based bootstrap
TPM, consistent with the findings in Palm et al. (2008).
8See Giordani and Söderlind (2003) for a detailed discussion on the specification and construction of the analytical

sample.
9In cases when the variance of the density forecast for an individual is zero, we put an upper bound of 120 on

the precision aith, since the largest precision in our sample is 101. Though arbitrarily, it is better to keep these large
precision numbers rather than throw them away, because they reflect 100% certainty underlying individuals’ fore-
casts. More importantly, the original order of forecast uncertainty is preserved, since a precision of 120 indicates a
higher certainty than a precision of 101.
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TABLE 4

Panel unit root tests of forecast precision

Inflation Real GDP

DF Simes DF Simes
ID statistics P-value criterion statistics P-value criterion
20 −0.94 0.298 0.019 −2.12 0.989 0.027
65 −2.72 0.009 0.008 6.97 1.000 0.038
84 −0.16 0.616 0.025 −1.15 0.219 0.008
99 3.62 1.000 0.044 2.81 0.998 0.033
407 −3.91 0.001 0.002 2.82 0.998 0.035
411 −2.60 0.012 0.010 3.30 1.000 0.040
420 −1.84 0.063 0.015 −0.56 0.460 0.015
421 0.55 0.827 0.029 −3.90 0.001 0.002
426 −1.21 0.201 0.017 −0.99 0.278 0.010
428 1.72 0.975 0.033 −2.25 0.027 0.004
431 2.59 0.996 0.042 −0.07 0.647 0.019
433 2.32 0.993 0.038 −0.35 0.547 0.017
439 4.01 1.000 0.046 1.12 0.926 0.025
446 −0.42 0.517 0.021 4.87 1.000 0.042
456 −2.43 0.018 0.013 5.21 1.000 0.044
463 3.55 1.000 0.048 4.20 1.000 0.046
472 2.18 0.990 0.035 0.95 0.903 0.023
483 2.46 0.995 0.040 2.25 0.992 0.029
484 3.31 1.000 0.050 5.28 1.000 0.048
504 1.55 0.965 0.031 0.93 0.900 0.021
507 0.00 0.670 0.027 −1.80 0.069 0.006
508 −3.19 0.003 0.004 −0.83 0.343 0.013
510 −2.73 0.009 0.006 4.64 1.000 0.050
512 −0.17 0.614 0.023 2.37 0.993 0.031

P 0.004 0.796
Z 1.000 1.000
Wm 0.000 0.023

Note: The DF statistics are based on univariate AR(1) specification in the level of
the variable without an intercept. The corresponding P-values are obtained using the
response surfaces estimated inMacKinnon (1996). Simes criterion is calculated as i�/N
based on ordered P-values for i=1, . . . ,N . P isMaddala andWu (1999)’s Fisher test, Z
is Demetrescu et al. (2006)’s modified inverse normal test andWm is the modified TPM.
All statistics are calculated based on the same sample period, namely 1992:Q1-2009:Q2,
using the density forecasts from Survey of Professional Forecasters. The significance
level � is set at 0.05.

Now we turn to panel unit root tests that account for this positive cross-section depen-
dence.10 The joint null and alternative hypotheses are specified in equations (3) and (4). For
inflation forecasts, the S, P andWm tests reject the joint null hypothesis of non-stationarity
in forecasters’ precision updating process at the 5% significance level, but the Z test fails
to reject the null. As for real GDP forecasts, the S and Wm tests show strong evidence of
rejection, but the P and Z tests do not reject. To understand the mixed evidence against the
null, recall that the Z test uses all P-values and tends to lose power when some P-values
10Note that Bai and Ng (2004)’s Pce test, Pesaran (2007)’s CIPS test and the bootstrap tests require balanced panels

and are not calculated for this empirical example of unbalanced panel.
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are very large. In this example, about 40% of the P-values are close to 1 for inflation and
60% for real GDP. In contrast, by truncating these large P-values are removed, increasing
the power of Wm. The S test is also powerful in this case, since there are some very small
and reinforcing P-values in the panel. Thus, the evidence from panel data analysis shows
that in predicting real GDP and inflation, some professional forecasters do not update their
forecast precision in an optimal Bayesian way. Using the approaches of Hanck (2009) or
Moon and Perron (2012) may give insight to which forecasters do not behave optimally.

V. Conclusion
In this paper, we propose two panel unit root tests: the modified TPM, Wm, and the resid-
ual-based bootstrap TPM, W *. The Wm test allows for an unbalanced panel and the W *

test is robust to general forms of cross-section dependence in the panel. We conduct a
systematic comparison of the proposed tests with other commonly used panel unit root
tests. Evidence from Monte Carlo simulations shows that both tests deliver good power
with moderate and large T values. Although the Wm test is slightly oversized, the W * test
yields good empirical size. To illustrate the usefulness of the proposed tests, we apply them
to a panel of real GDP and inflation density forecasts. The resulting evidence indicates that
some professional forecasters do not update their forecast precision in an optimal Beyesian
way.
Our approach can be extended in a number of directions. One obvious generalization is

to incorporate weights, thus allowing tests of more precision to play a larger role. Another
worthwhile extension would be to develop an adaptive TPM that optimizes the selection
of the truncation point among a set of candidates.

Final Manuscript Received: April 2012
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